Advertisements
Advertisements
Question
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Solution
`cos 30° = sqrt3/2, sin 60° = sqrt3/2, cot 30° = sqrt3, sin 45° = 1/sqrt2, sec 45° = sqrt2` ...(I)
∴ `2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°` ...(From I)
`= 2/3 [(sqrt3/2)^4 - (1/sqrt2)^4]- 3[(sqrt3/2)^2 - (sqrt2)^2] + 1/4 (sqrt3)^2`
`= 2/3 [9/16 - 1/4] - 3[3/4 - 2] + [1/4 × 3]`
`= 2/3 [9/16 - 4/16] - 3[3/4 - 8/4] + 3/4`
`= 2/3 [(9 - 4)/16] - 3[(3 - 8)/4] + 3/4`
`= 2/3 [5/16] - 3[(- 5)/4] + 3/4`
`= 2/3 × 5/16 - 3 × (- 5)/4 + 3/4`
`= 5/24 + 15/4 + 3/4`
`= (5 + 90 + 18)/24`
`= 113/24`
APPEARS IN
RELATED QUESTIONS
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Prove that:
sin 60° = 2 sin 30° cos 30°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B