Advertisements
Advertisements
Question
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Solution
Sin (50 + θ) = cos (90 – (50 + θ)) = cos (40 – θ)
Tan 1 = tan (90° − 89°) ∙ cot 89°
Tan 10° = tan (90° - 80°) = cot 80°
Tan 20° = tan (90° - 70°) = cot 70°
⇒ cos (40° - θ) – cos (40 - θ) = cot 89° tan 89° . cot 80° . cot 70° tan 70°
Cot . tan θ = 1
= 1 ∙ 1 ∙ 1 = 1
LHS = RHS
Hence proved
APPEARS IN
RELATED QUESTIONS
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.