Advertisements
Advertisements
प्रश्न
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
उत्तर
Sin (50 + θ) = cos (90 – (50 + θ)) = cos (40 – θ)
Tan 1 = tan (90° − 89°) ∙ cot 89°
Tan 10° = tan (90° - 80°) = cot 80°
Tan 20° = tan (90° - 70°) = cot 70°
⇒ cos (40° - θ) – cos (40 - θ) = cot 89° tan 89° . cot 80° . cot 70° tan 70°
Cot . tan θ = 1
= 1 ∙ 1 ∙ 1 = 1
LHS = RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.