Advertisements
Advertisements
प्रश्न
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
उत्तर
Given A = 30°
sin 2A = sin 2(30°) = sin60° = `(sqrt3)/(2)`
2sin A cos A = 2sin 30° cos 30°
= `2(1/2)(sqrt3/2)`
= `(sqrt3)/(2)`
`(2 tan"A")/(1 + tan^2 30°) = (2tan 30°)/(1 + tan^2 30°)`
= `(2(1/sqrt3))/(1 + (1/sqrt3)^2`
= `(2/sqrt3)/(4/(3)`
= `(2)/(sqrt3) xx (3)/(4)`
= `(sqrt3)/(2)`
∴ sin 2A = 2sin A cos A = `(2tan"A")/(1 + tan^2 "A")`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate tan 35° tan 40° tan 50° tan 55°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Prove that : sec245° - tan245° = 1
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
The value of 5 sin2 90° – 2 cos2 0° is ______.