Advertisements
Advertisements
प्रश्न
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
उत्तर
LHS = tan(A – B)
= tan (60° – 30°)
= tan30°
= `(1)/(sqrt3)`
RHS = `(tan"A" – tan"B")/(1 + tan 60°. tan 30°)`
= `(tan60° – tan30°)/(1+tan 60°.tan30°)`
= `(sqrt3 – 1/(sqrt3))/(1 + sqrt3(1/sqrt3))`
= `(2)/(2sqrt3)`
= `(1)/sqrt3`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following :
`tan 10^@/cot 80^@`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
cos2 30° - sin2 30° = cos 60°
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
Verify the following equalities:
sin2 60° + cos2 60° = 1
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`