मराठी

Given A = 60° and B = 30°, prove that: tan (A - B) = ABABtanA – tanB1+tanA.tanB - Mathematics

Advertisements
Advertisements

प्रश्न

Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`

बेरीज

उत्तर

LHS = tan(A – B) 

= tan (60° – 30°)

= tan30°

= `(1)/(sqrt3)`

RHS = `(tan"A"  –  tan"B")/(1 + tan 60°. tan 30°)`

= `(tan60° –  tan30°)/(1+tan 60°.tan30°)`

= `(sqrt3  –  1/(sqrt3))/(1 + sqrt3(1/sqrt3))`

= `(2)/(2sqrt3)`

= `(1)/sqrt3`

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 1.4 | पृष्ठ २९३

संबंधित प्रश्‍न

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following :

`tan 10^@/cot 80^@`


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

cos2 30°  - sin2 30° = cos 60°


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Prove that : sec245° - tan245° = 1


Find the value of x in the following:  2 sin3x = `sqrt(3)`


Find the value of x in the following: tan x = sin45° cos45° + sin30°


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


Verify the following equalities:

sin2 60° + cos2 60° = 1


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×