Advertisements
Advertisements
प्रश्न
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
उत्तर
We have
\[\cos2\theta = \sin4\theta\]
\[ \Rightarrow \sin\left( 90^\circ- 2\theta \right) = \sin4\theta\]
\[\text{Comparing both sides, we get}\]
\[90^\circ - 2\theta = 4\theta\]
\[ \Rightarrow 2\theta + 4\theta = 90^\circ\]
\[ \Rightarrow 6\theta = 90^\circ\]
\[ \Rightarrow \theta = \frac{90^\circ}{6}\]
\[ \therefore \theta = 15^\circ\]
Hence, the value of θ is 15°
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following :
`tan 10^@/cot 80^@`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`