Advertisements
Advertisements
प्रश्न
Find the value of:
tan2 30° + tan2 45° + tan2 60°
उत्तर
tan2 30° + tan2 45° + tan2 60° = `(1/sqrt3)^2 + 1^2 + (sqrt3)^2`
= `(1)/(3) + 1+ 3`
= `(13)/(3)`
= `4(1)/(3)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate cos 48° − sin 42°
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin(A +B) = 1(A -B) = 1, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.