Advertisements
Advertisements
प्रश्न
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
उत्तर
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
= `(1/2+1-2/sqrt3)/(2/sqrt3+1/2+1)`
= `((3/2-2/sqrt3)/(3/2+2/sqrt3))`
= `((3sqrt3 - 4)/(2sqrt3))/((4 + 3sqrt3)/(2sqrt3))`
= `(3sqrt3-4)/(3sqrt3+4)`
= `((3sqrt3-4)(3sqrt3-4))/((3sqrt3+4)(3sqrt3-4))`
= `((3sqrt3-4)^2)/((3sqrt3)^2 -(4)^2)`
= `(27+16-24sqrt3)/(27-16)`
= `(43-24sqrt3)/11`
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
cosec 31° − sec 59°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`