Advertisements
Advertisements
प्रश्न
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
उत्तर
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
= `(1/2 - 1 + 2 xx 1)/(1/sqrt(3) xx sqrt(3))`
= `(1/2 - 1 + 2)/(1)`
= `(1)/(2) - 1 + 2`
= `(1)/(2) + 1`
= `(3)/(2)`
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: cos2 60° + sin2 30°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Verify the following equalities:
1 + tan2 30° = sec2 30°
If 2 sin 2θ = `sqrt(3)` then the value of θ is