मराठी

If sin x = cos x and x is acute, state the value of x - Mathematics

Advertisements
Advertisements

प्रश्न

If sin x = cos x and x is acute, state the value of x

बेरीज

उत्तर

The angle, x is acute and hence we have, 0 < x
We know that
cos2x + sin2 x = 1
⇒ 2sin2 x = 1

⇒ sin x = `(1)/(sqrt2)`

⇒ x = 45°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 7.1 | पृष्ठ २९१

संबंधित प्रश्‍न

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


find the value of: sin 30° cos 30°


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If sin x = cos y, then x + y = 45° ; write true of false


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

cos2 30°  - sin2 30° = cos 60°


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Prove that : sec245° - tan245° = 1


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: `sqrt(3)sin x` = cos x


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If sin(A +B) = 1(A -B) = 1, find A and B.


Verify the following equalities:

1 + tan2 30° = sec2 30°


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×