मराठी

If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.

बेरीज

उत्तर

sinθ = cosθ

⇒ `"sinθ"/"cosθ" = "cosθ"/"cosθ"`
⇒  tanθ = 1
⇒  tanθ = tan45°
⇒ θ = 45°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 9

संबंधित प्रश्‍न

Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


sin 2A = 2 sin A is true when A = ______.


`(2 tan 30°)/(1-tan^2 30°)` = ______.


Evaluate cos 48° − sin 42°


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

cosec 31° − sec 59°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×