Advertisements
Advertisements
प्रश्न
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
उत्तर
sinθ = cosθ
⇒ `"sinθ"/"cosθ" = "cosθ"/"cosθ"`
⇒ tanθ = 1
⇒ tanθ = tan45°
⇒ θ = 45°.
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
sin 2A = 2 sin A is true when A = ______.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate cos 48° − sin 42°
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.