Advertisements
Advertisements
प्रश्न
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
उत्तर
We have to find: `(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Since `sec 70^@/(cosec 20^@) + sin 59^@/cos 31^@` and `sec (90^@ - theta) = cosec theta
So
`sec 70^@/(cosec 20^@) + sin 59^@/cos 31^@ = (sec (90^@ - 20^@))/(cosec 20^@) + (sin (90^@ - 31^@))/(cos 31^@)`
`= (cosec 20^@)/(cosec 20^@) + (cos 31^@)/(cos 31^@)`
1 + 1
= 2
So value of `(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)` is 2
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
If sin x = cos y, then x + y = 45° ; write true of false
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10