Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
उत्तर
We know `sec(90^@ - theta) = cosec theta` and `cos (90^2 - theta) = sin theta`
`cos 78^@ + sec 78^@ = cos(90^@ - 12^@) + sec (90^@ - 12^@)`
`= sin 12^@ + cosec 12^@`
Thus the desired expression is `sin 12^@ + cosec 12^@`
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following :
`cos 19^@/sin 71^@`
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.