Advertisements
Advertisements
प्रश्न
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
उत्तर
Given that A = B = 45°
LHS = cos (A + B)
= cos ( 45° + 45°)
= cos 90°
= 0
RHS = cos A cos B – sin A sin B
= cos 45° cos 45° – sin 45° sin 45°
= `(1)/(sqrt2) (1)/(sqrt2) – (1)/(sqrt2) (1)/(sqrt2)`
= 0
LHS = RHS
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
`(2 tan 30°)/(1+tan^2 30°)` = ______.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
If sin x = cos x and x is acute, state the value of x
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: cos2 60° + sec2 30° + tan2 45°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `2sin x/(2)` = 1
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.