Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
उत्तर
sin60° sin30°+ cos30° cos60°.
sin60° = `sqrt(3)/(2)`
sin30° = `(1)/(2)`
cos30° = `sqrt(3)/(2)`
cos60° = `(1)/(2)`
sin60° sin30° + cos30° cos60°
= `sqrt(3)/(2) xx (1)/(2) + sqrt(3)/(2) xx (1)/(2)`
= `sqrt(3)/(4) + sqrt(3)/(4)`
= `(2sqrt(3))/(4)`
= `sqrt(3)/(2)`.
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate cos 48° − sin 42°
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
If sin x = cos x and x is acute, state the value of x
find the value of: cosec2 60° - tan2 30°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Verify cos3A = 4cos3A – 3cosA, when A = 30°