Advertisements
Advertisements
प्रश्न
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
उत्तर
Cos (90° - θ) = sin A cosec (90 - θ) = sec θ
Sec (90° - θ) = cosec θ sin (90 - θ) = cos θ
Cot (90 - θ) = tan θ
`=> (sin theta cosec theta tan theta)/(sec theta. cos theta. tan theta) = (sin theta cosec theta)/(sec theta cos theta)` ` [∵ sin theta cosec theta = 1]`
=1 `[sec theta cos theta = 1]`
`tan (90^@ - theta)/cot theta = cot theta/cot theta = 1`
=> 1 + 1= 2
`:. LHS = RHS`
Hence proved
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following :
cosec 31° − sec 59°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`