Advertisements
Advertisements
प्रश्न
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
उत्तर
We have to prove sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Left-hand side
`= sin theta.sin(90^@ - theta) - cos theta.cos(90^@ - theta)`
`= sin theta.cos theta - cos thete.sin theta`
`= sin theta (cos theta -cos theta)`
= 0
=Right hand side
Proved
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°