Advertisements
Advertisements
प्रश्न
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
उत्तर
Sin (70°) = sin (90° - 20°) = cos 20°
Cos 70° = cos (90° - 20°) = sin 20°
`=> cos 20^@/cos 20^@ + sec 70^@/sec 70^@ - 2 sin 20 cosec 20^@`
1 + 1 - 2(1) = 0
∴ LHS = RHS Hence proved
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: sin2 30° + cos2 30°+ cot2 45°
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B