Advertisements
Advertisements
प्रश्न
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
उत्तर
A = B= 45°
L.H.S.
= sin(A - B)
= sin(45° - 45°)
= sin0°
= 0
R.H.S.
= sinA cosB - cosA sinB
= sin45° x cos45° - cos45° x sin45°
= `(1)/sqrt(2) xx (1)/sqrt(2) - (1)/sqrt(2) xx (1)/sqrt(2)`
= `(1)/(2) - (1)/(2)`
= 0
⇒ sin(A - B) = sinA cosB - cosA sinB.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).