Advertisements
Advertisements
प्रश्न
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
उत्तर
A = B= 45°
L.H.S.
= sin(A - B)
= sin(45° - 45°)
= sin0°
= 0
R.H.S.
= sinA cosB - cosA sinB
= sin45° x cos45° - cos45° x sin45°
= `(1)/sqrt(2) xx (1)/sqrt(2) - (1)/sqrt(2) xx (1)/sqrt(2)`
= `(1)/(2) - (1)/(2)`
= 0
⇒ sin(A - B) = sinA cosB - cosA sinB.
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Evaluate cos 48° − sin 42°
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cos2 30° - sin2 30° = cos 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).