हिंदी

If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B - Mathematics

Advertisements
Advertisements

प्रश्न

If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B

योग

उत्तर

A = B= 45°
L.H.S.
= sin(A - B)
= sin(45° - 45°)
= sin0°
= 0
R.H.S.
= sinA cosB - cosA sinB
= sin45° x cos45° - cos45° x sin45°

= `(1)/sqrt(2) xx (1)/sqrt(2) - (1)/sqrt(2)  xx (1)/sqrt(2)`

= `(1)/(2) - (1)/(2)`
= 0
⇒ sin(A - B) = sinA cosB - cosA sinB.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 17.1

संबंधित प्रश्न

Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


Evaluate cos 48° − sin 42°


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

cosec 31° − sec 59°


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

cos2 30°  - sin2 30° = cos 60°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Prove that : cos60° . cos30° - sin60° . sin30° = 0


Find the value of x in the following: tan x = sin45° cos45° + sin30°


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Verify cos3A = 4cos3A – 3cosA, when A = 30°


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×