Advertisements
Advertisements
प्रश्न
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
उत्तर
cos 90° = 0, sin 45° = `1/sqrt(2)`, cos 45° = `1/sqrt(2)`
cos 90° = 0 ...(1)
1 – 2 sin2 45° = `1 - 2(1/sqrt(2))^2`
= `1 - 2 xx 1/2`
= 1 – 1 = 0 → (2)
2 cos2 45° – 1 = `2(1/sqrt(2))^2 - 1`
= `2/2 - 1`
= `(2 - 2)/2`
= 0 → (3)
From (1), (2) and (3) we get
cos 90° = 1 – 2 sin2 45° = 2 cos2 45° – 1
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
If sin x = cos x and x is acute, state the value of x
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.