Advertisements
Advertisements
प्रश्न
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
उत्तर
sin 30° = `1/2`, cos 60° = `1/2`, cos 30° = `sqrt(3)/2`, sin 60° = `sqrt(3)/2`, sin 90° = 1
L.H.S = sin 30° cos 60° + cos 30° sin 60°
= `1/2 xx 1/2 + sqrt(3)/2 xx sqrt(3)/2`
= `1/4 + 3/4`
= `4/4`
= 1
R.H.S = sin 90° = 1
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Evaluate: sin2 60° + 2tan 45° – cos2 30°.