Advertisements
Advertisements
प्रश्न
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
उत्तर
sin (A – B) = 0 ...(Given)
`\implies` sin (A – B) = sin 0° ...(∵ sin 0° = 0)
`\implies` A – B = 0 ...(i)
and 2 cos (A + B) – 1 = 0 ...(Given)
`\implies` 2 cos (A + B) = 1
`\implies` cos (A + B) = `1/2`
`\implies` cos (A + B) = cos 60° ...`(∵ cos 60^circ = 1/2)`
`\implies` A + B = 60° ...(ii)
On adding equations (i) and (ii), we get
2A = 60°
`\implies` A = 30°
Put this value in equation (i), we get
30° – B = 0
`\implies` B = 30°
APPEARS IN
संबंधित प्रश्न
`(2 tan 30°)/(1+tan^2 30°)` = ______.
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
Find the value of x in the following: `2sin x/(2)` = 1
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB