Advertisements
Advertisements
प्रश्न
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
उत्तर
Cos (90° - θ) = sin A cosec (90 - θ) = sec θ
Sec (90° - θ) = cosec θ sin (90 - θ) = cos θ
Cot (90 - θ) = tan θ
`=> (sin theta cosec theta tan theta)/(sec theta. cos theta. tan theta) = (sin theta cosec theta)/(sec theta cos theta)` ` [∵ sin theta cosec theta = 1]`
=1 `[sec theta cos theta = 1]`
`tan (90^@ - theta)/cot theta = cot theta/cot theta = 1`
=> 1 + 1= 2
`:. LHS = RHS`
Hence proved
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
For any angle θ, state the value of: sin2 θ + cos2 θ
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°