Advertisements
Advertisements
प्रश्न
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
उत्तर
8 sin 2x cos 4x sin 6x = 8 sin 2(15°) × cos 4(15°) × sin(6 × 15°)
= 8 sin 30° × cos 60° × sin 90°
= `8 xx 1/2 xx 1/2 xx 1`
= 2
APPEARS IN
संबंधित प्रश्न
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
cos2 30° - sin2 30° = cos 60°
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Find the value of x in the following: `2sin x/(2)` = 1
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.