Advertisements
Advertisements
प्रश्न
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
उत्तर
Given that A = B = 45°
LHS = sin (A – B)
= sin ( 45° – 45°)
= sin 0°
= 0
RHS = sin A cos B – cos A sin B
= sin 45° cos 45° – cos 45° sin 45°
= `(1)/(sqrt2) (1)/(sqrt2) – (1)/(sqrt2) (1)/(sqrt2)`
= 0
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
find the value of: tan 30° tan 60°
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB