हिंदी

If A =30o, then prove that : sin 3A = 3 sin A - 4 sin3A - Mathematics

Advertisements
Advertisements

प्रश्न

If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.

योग

उत्तर

Given A = 30°

sin 3A = sin 3(30°)
= sin 90°
=1

3 sin A – 4 sin3A = 3 sin 30° – 4 sin330°

=`3(1/2) – 4(1/2)^3`

= `(3)/(2) – (1)/(2)`

= 1

∴ sin 3A = 3 sin A – 4 sin3A

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 2.4 | पृष्ठ २९३

संबंधित प्रश्न

`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


find the value of: sin 30° cos 30°


Prove that:
sin 60° = 2 sin 30° cos 30°


If sin x = cos x and x is acute, state the value of x


find the value of: tan 30° tan 60°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


The value of 5 sin2 90° – 2 cos2 0° is ______.


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×