Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
उत्तर
A = 30° and B = 60°
L.H.S.
= `(sin("A" -"B"))/(sin"A" . sin"B")`
= `(sin(30° - 60°))/(sin30° xx sin60°)`
= `(-sin"30°)/(sin30° xx sin60°)`
= `(-(1)/(2))/((1)/(2) xx sqrt(3)/(2)`
= `-(2)/sqrt(3)`
R.H.S.
= cotB - cotA
= cot60° - cot30°
= `(1)/sqrt(3) - sqrt(3)`
= `(1 - 3)/sqrt(3)`
= `-(2)/sqrt(3)`
⇒ `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA.
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If sin x = cos x and x is acute, state the value of x
find the value of: cos2 60° + sin2 30°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
Verify the following equalities:
sin2 60° + cos2 60° = 1
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: sin2 60° + 2tan 45° – cos2 30°.