हिंदी

Prove that : sec245° - tan245° = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that : sec245° - tan245° = 1

योग

उत्तर

L.H.S. = sec245° - tan245° 
= `(sqrt(2))^2 - (1)^2`
= 2 - 1
= 1
= R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 3.3

संबंधित प्रश्न

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


Evaluate cos 48° − sin 42°


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`


Evaluate the following :

cosec 31° − sec 59°


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


find the value of: sin 30° cos 30°


Prove that:
sin 60° = 2 sin 30° cos 30°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify the following equalities:

sin2 60° + cos2 60° = 1


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Verify cos3A = 4cos3A – 3cosA, when A = 30°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×