Advertisements
Advertisements
प्रश्न
Prove that : sec245° - tan245° = 1
उत्तर
L.H.S. = sec245° - tan245°
= `(sqrt(2))^2 - (1)^2`
= 2 - 1
= 1
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Evaluate cos 48° − sin 42°
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: sin 30° cos 30°
Prove that:
sin 60° = 2 sin 30° cos 30°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Verify cos3A = 4cos3A – 3cosA, when A = 30°