हिंदी

Prove that: ( cot 30 ° + 1 cot 30 ° − 1 ) 2 = sec 30 ° + 1 sec 30 ° − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: (cot30°+1cot30°-1)2=sec30°+1sec30°-1

योग

उत्तर

L.H.S. = (cot30°+1cot30°-1)2

= (3+13-1)2

= (3+13-1×3+13+1)2

= (3)2+(1)2+23(3)2+(1)2-23

= 3+1+233+1-23

= 4+234-23

= 2(2+3)2(2-3)

= 2+32-3

= 23+123-1

= sec30°+1sec30°-1
= R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 3.4

संबंधित प्रश्न

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


If tan (A + B) = 3 and tan (A – B) = 13; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

5cos260°+ 4sec230°-tan245°sin230°+ cos230°


Evaluate the following :

(sin49cos41)2+(cos41sin49)2


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following

tan(90-A)cotAcosec2A  -cos2A=0


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If sin x = cos y, then x + y = 45° ; write true of false


find the value of: tan 30° tan 60°


prove that:

tan (2 x 30°) = 2tan30°1tan230°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


For any angle θ, state the value of: sin2 θ + cos2 θ


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Prove that : cos60° . cos30° - sin60° . sin30° = 0


Prove that : sec245° - tan245° = 1


Find the value of x in the following:  2 sin3x = 3


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Without using table, find the value of the following: tan260°+4cos245°+3sec230°+5cos90°cosec30°+sec60°-cot230°


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If sin(A - B) = 12 and cos(A + B) = 12, find A and B.


Find the value of the following:

tan45cosec30+sec60cot45-5sin902cos0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.