Advertisements
Advertisements
प्रश्न
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
उत्तर
We have to find `((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Since `
sec 70^@/(cosec 20^@) + sin 59^@/cos 31^@ sin (90^@ - theta) = cos theta` and `cos(90^@ - theta) = sin theta`
So
`((sin(90^@ - 41^@))/cos 41^@)^2 + (cos (90^@ - 49^@)/sin 49^@)^2` = `((cos 41^@)/cos 41^@)^2 + ((sin 49^2)/sin 49^@)^2`
= 1 + 1
= 2
So value of `(sin 49^@/cos 41^@)^2 + (cos 41^@/sin 49^@)^@` is 2
APPEARS IN
संबंधित प्रश्न
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that:
cosec2 45° - cot2 45° = 1
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Verify the following equalities:
sin2 60° + cos2 60° = 1
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°