Advertisements
Advertisements
प्रश्न
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
उत्तर
L.H.S: `(sqrt(3) + 1) (3 - cot 30^circ)`
= `(sqrt3 + 1)(3 - sqrt(3))` ...`[∵ cos 30^circ = sqrt(3)]`
= `(sqrt(3) + 1) sqrt(3) (sqrt(3) - 1)` ...`[∵ (3 - sqrt(3)) = sqrt(3) (sqrt(3) - 1)]`
= `((sqrt(3))^2 - 1) sqrt(3)` ...`[∵ (sqrt(3) + 1)(sqrt(3) - 1) = ((sqrt(3))^2 - 1)]`
= `(3 - 1) sqrt(3)`
= `2sqrt(3)`
Similarly solving R.H.S: tan3 60° – 2 sin 60°
Since, tan 60° = `sqrt(3)` and sin 60° = `sqrt(3)/2`,
We get,
`(sqrt(3))^3 - 2 * (sqrt(3)/2) = 3sqrt(3) - sqrt(3)`
= `2sqrt(3)`
Therefore, L.H.S = R.H.S
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
cosec 31° − sec 59°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A