Advertisements
Advertisements
प्रश्न
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
उत्तर
`sin 30^@ = 1/2, cos 60 = 1/2, sin 60^@ = sqrt3/2, cos 45^@ = 1/sqrt2, tan 60^@ = sqrt3`
`=> 4[[1/2]^4 + [1/2]^4] - 2/3[(sqrt3/2)^2 - (1/sqrt2)^2] + 1/2 (sqrt3)^2`
`4[2. 1/16] - 2/3 [3/4 - 1/2] + 3/2`
`= 1/2 - 2/3 . 1/4 + 3/2 = 11/6`
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.