हिंदी

Prove that: sin60°. cos30° - sin60°. sin30° = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`

योग

उत्तर

L.H.S. = sin60° . cos30° - cos60° . sin30°

= `sqrt(3)/(2) xx sqrt(3)/(2) - (1)/(2) xx (1)/(2)`

= `(3)/(4) - (1)/(4)`

= `(2)/(4)`

= `(1)/(2)`
= R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 3.1

संबंधित प्रश्न

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate cos 48° − sin 42°


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following

`sec 11^@/(cosec 79^@)`


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cos2 60° + sec2 30° + tan2 45°


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×