Advertisements
Advertisements
प्रश्न
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
उत्तर
L.H.S. = sin60° . cos30° - cos60° . sin30°
= `sqrt(3)/(2) xx sqrt(3)/(2) - (1)/(2) xx (1)/(2)`
= `(3)/(4) - (1)/(4)`
= `(2)/(4)`
= `(1)/(2)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate cos 48° − sin 42°
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following
`sec 11^@/(cosec 79^@)`
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cos2 60° + sec2 30° + tan2 45°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10