Advertisements
Advertisements
प्रश्न
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
उत्तर
LHS =3 cosec260° – 2 cot230° + sec245°
=`3(2/sqrt3)^2 – 2(sqrt3)^2 + (sqrt2)^2`
= `3xx4/3-2xx3+2`
= 4 – 6 + 2
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: tan 30° tan 60°
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.