Advertisements
Advertisements
प्रश्न
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
उत्तर
LHS = `((tan60°+ 1)/(tan 60° – 1))^2`
= `((sqrt3 +1)/(sqrt3 - 1))^2`
= `(sqrt3 +1)^2/(sqrt3 -1)^2`
= `((sqrt3)^2+(1)^2+2xxsqrt3xx1)/((sqrt3)^2+(1)^2-2xxsqrt3xx1)`
= `(3+1+2sqrt3)/(3+1-2sqrt3)`
= `(4 + 2sqrt3)/(4 -2sqrt3 )`
= `(2(2+sqrt3))/(2(2- sqrt3)`
= `(2+sqrt3)/(2-sqrt3)`
R.H.S
= `(1+ cos 30°) /(1- cos 30°)`
= `(1+sqrt3/2)/(1-sqrt3/2)`
= `((2 + sqrt3)/2)/((2 - sqrt3)/2)`
= `(2+sqrt3)/(2-sqrt3)`
L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
cosec 31° − sec 59°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Evaluate tan 35° tan 40° tan 50° tan 55°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin(A +B) = 1(A -B) = 1, find A and B.
If sin 30° = x and cos 60° = y, then x2 + y2 is
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10