Advertisements
Advertisements
प्रश्न
Evaluate tan 35° tan 40° tan 50° tan 55°
उत्तर
tan 35° = tan (90° - 55°) = cot 55°
tan 40° = tan (90° - 50°) = cot 55°
tan 65° = 1
cot 55 tan 55∙ cot 50 tan 50 ∙ tan 45
1 ∙ 1 ∙ 1 = 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°