Advertisements
Advertisements
Question
Evaluate tan 35° tan 40° tan 50° tan 55°
Solution
tan 35° = tan (90° - 55°) = cot 55°
tan 40° = tan (90° - 50°) = cot 55°
tan 65° = 1
cot 55 tan 55∙ cot 50 tan 50 ∙ tan 45
1 ∙ 1 ∙ 1 = 1
APPEARS IN
RELATED QUESTIONS
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
sin 2A = 2 sin A is true when A = ______.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B