Advertisements
Advertisements
Question
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Sum
Solution
sin θ = cos θ
`\Rightarrow \frac{\sin \theta }{\cos \theta }=\frac{\cos \theta }{\cos\theta }`
[Dividing both sides by cos θ]
⇒ tanθ = 1
⇒ tanθ = tan45° ⇒ θ= 45°
`∴ 2 tan^2 θ + sin^2 θ – 1`
`= 2tan^2 45° + sin^2 45° – 1`
`=2(2)^{2}+( \frac{1}{\sqrt{2}} )^{2}-1 `
`=2+\frac{1}{2}-1=\frac{5}{2}-1=\frac{3}{2}`
shaalaa.com
Is there an error in this question or solution?