Advertisements
Advertisements
Question
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
Solution
A = B = 45°
L.H.S.
= cos (A − B)
= cos (45° − 45°)
= cos 0°
= 1
R.H.S.
= cos A cos B + sin A sin B
= cos 45° x cos 45° + sin 45° x sin 45°
= `(1)/sqrt(2) xx (1)/sqrt(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
= `(1)/(2) + (1)/(2)`
= 1
⇒ cos (A − B) = cos A cos B + sin A sin B
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cos2 60° + sec2 30° + tan2 45°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
For any angle θ, state the value of: sin2 θ + cos2 θ
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin(A +B) = 1(A -B) = 1, find A and B.
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.