Advertisements
Advertisements
प्रश्न
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
उत्तर
A = B = 45°
L.H.S.
= cos (A − B)
= cos (45° − 45°)
= cos 0°
= 1
R.H.S.
= cos A cos B + sin A sin B
= cos 45° x cos 45° + sin 45° x sin 45°
= `(1)/sqrt(2) xx (1)/sqrt(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
= `(1)/(2) + (1)/(2)`
= 1
⇒ cos (A − B) = cos A cos B + sin A sin B
APPEARS IN
संबंधित प्रश्न
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
The value of 5 sin2 90° – 2 cos2 0° is ______.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10