Advertisements
Advertisements
प्रश्न
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
उत्तर
Given that B = 20°
`(3 sin 3"B"+2 cos(2"B"+5°))/(2 cos 3"B" – sin (2"B" – 10°)` = `(3 sin 3 xx 20°+2 cos(2 xx 20°+5°))/(2 cos 3 xx 20° – sin (2 xx 20° – 10°))`
= `( 3 sin 60° + 2 cos 45°)/(2 cos 60° – sin 30°)`
= `(3(sqrt3/2) + 2(1/sqrt2))/(2(1/2) – (1)/(2)`
= `(3(sqrt3)/(2) + sqrt2)/(2)`
= `3 sqrt3 + 2 sqrt2`
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate cos 48° − sin 42°
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
1 + tan2 30° = sec2 30°
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10