मराठी

ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45° - Mathematics

Advertisements
Advertisements

प्रश्न

ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°

बेरीज

उत्तर

Given that AB = BC = x

∴ AC = `sqrt(AB^2+BC^2) = sqrt(x^2 + x^2) = xsqrt2`

tan 45°  = `"AB"/"BC" = x/x =1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 5.3 | पृष्ठ २९१

संबंधित प्रश्‍न

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

cosec 31° − sec 59°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×