Advertisements
Advertisements
प्रश्न
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
उत्तर
Given that AB = BC = x
∴ AC = `sqrt(AB^2+BC^2) = sqrt(x^2 + x^2) = xsqrt2`
tan 45° = `"AB"/"BC" = x/x =1`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
cosec 31° − sec 59°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).