मराठी

If tan (A + B) = 3 and tan (A – B) = 13; 0° < A + B ≤ 90°; A > B, find A and B. - Mathematics

Advertisements
Advertisements

प्रश्न

If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.

बेरीज

उत्तर १

tan (A + B) = `sqrt(3)` = tan 60° and tan (A – B) = `1/sqrt(3)` = tan 30°

A + B = 60°     ...(1)

A – B = 30°     ...(2)

2A = 90°

⇒ A = 45°

Adding (1) and (2)

A + B = 60°

A – B = 30°

Subtract equation (2) from (1)

A + B = 60°

A – B = 30°

2B = 30°

⇒ B = 15°

Note: sin(A + B) = sin A cos B + cos A sin B

sin(A + B) ≠ sin A + sin B

shaalaa.com

उत्तर २

Here, tan (A – B) = `1/sqrt(3)`

⇒ tan (A – B) = tan 30°          ...[∵ tan 30° = `1/sqrt(3)`]

⇒ (A – B) = 30°           ...(i)

Also, tan (A + B) = `sqrt(3)`

⇒ tan (A + B) = tan 60°           ...[∵ tan 60° = `sqrt(3)`]

⇒ A + B = 60°                                 ...(ii)

Solving (i) and (ii), we get:

A = 45° and B = 15°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.2 [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.2 | Q 3 | पृष्ठ १८७
आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.2 | Q 34 | पृष्ठ ४३
आर एस अग्रवाल Mathematics [English] Class 10
पाठ 6 T-Ratios of some particular angles
Exercises | Q 25

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Prove that:

cos2 30°  - sin2 30° = cos 60°


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


For any angle θ, state the value of: sin2 θ + cos2 θ


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×