Advertisements
Advertisements
प्रश्न
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
उत्तर १
tan (A + B) = `sqrt(3)` = tan 60° and tan (A – B) = `1/sqrt(3)` = tan 30°
A + B = 60° ...(1)
A – B = 30° ...(2)
2A = 90°
⇒ A = 45°
Adding (1) and (2)
A + B = 60°
A – B = 30°
Subtract equation (2) from (1)
A + B = 60°
A – B = 30°
2B = 30°
⇒ B = 15°
Note: sin(A + B) = sin A cos B + cos A sin B
sin(A + B) ≠ sin A + sin B
उत्तर २
Here, tan (A – B) = `1/sqrt(3)`
⇒ tan (A – B) = tan 30° ...[∵ tan 30° = `1/sqrt(3)`]
⇒ (A – B) = 30° ...(i)
Also, tan (A + B) = `sqrt(3)`
⇒ tan (A + B) = tan 60° ...[∵ tan 60° = `sqrt(3)`]
⇒ A + B = 60° ...(ii)
Solving (i) and (ii), we get:
A = 45° and B = 15°
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
For any angle θ, state the value of: sin2 θ + cos2 θ
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Evaluate: sin2 60° + 2tan 45° – cos2 30°.