Advertisements
Advertisements
प्रश्न
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
उत्तर
sin2 60° + 2tan 45° – cos2 30°
= `(sqrt(3)/2)^2 + 2(1) - (sqrt(3)/2)^2`
= `3/4 + 2 - 3/4`
= 2
APPEARS IN
संबंधित प्रश्न
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
If sin x = cos x and x is acute, state the value of x
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If sin(A +B) = 1(A -B) = 1, find A and B.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.