Advertisements
Advertisements
प्रश्न
If sin(A +B) = 1(A -B) = 1, find A and B.
उत्तर
sin(A +B) = 1
⇒ sin(A + B) = sin90°
⇒ A + B = 90° .....(i)
cos(A - B) = 1
⇒ cos(A - B) = cos0°
⇒ A - B = 0° ........(ii)
Adding (i) and (ii)
A + B +A - B= 90° + 0
2A = 90°
A = 45°
Substituitng value of A in (i)
A + B = 90°
45° + B = 90°°
B = 45°
Therefore,
A = B = 45°.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
find the value of: sin 30° cos 30°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
cosec2 45° - cot2 45° = 1
For any angle θ, state the value of: sin2 θ + cos2 θ
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of x in the following: `2sin x/(2)` = 1
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If sin 30° = x and cos 60° = y, then x2 + y2 is
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10