Advertisements
Advertisements
प्रश्न
sin 2A = 2 sin A is true when A = ______.
पर्याय
0°
30°
45°
60°
उत्तर
sin 2A = 2 sin A is true when A = 0.
Explanation:
Out of the given alternatives, only A = 0° is correct.
As sin 2A = sin 0° = 0
2 sinA = 2sin 0° = 2(0) = 0
Hence, 0° is correct.
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`