हिंदी

Sin 2A = 2 sin A is true when A = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

sin 2A = 2 sin A is true when A = ______.

विकल्प

  • 30°

  • 45°

  • 60°

MCQ
रिक्त स्थान भरें

उत्तर

sin 2A = 2 sin A is true when A = 0.

Explanation:

Out of the given alternatives, only A = 0° is correct.

As sin 2A = sin 0° = 0

2 sinA = 2sin 0° = 2(0) = 0

Hence, 0° is correct.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.2 [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.2 | Q 2.3 | पृष्ठ १८७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Prove that:
sin 60° = 2 sin 30° cos 30°


find the value of: cosec2 60° - tan2 30°


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×