Advertisements
Advertisements
प्रश्न
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
विकल्प
tan 90°
1
sin 45°
0
उत्तर
`(1- tan^2 45°)/(1+tan^2 45°)` = 0
Explanation:
`(1- tan^2 45°)/(1+tan^2 45°) `
= `(1-(1)^2)/(1+(1)^2)`
= `(1-1)/(1+1)`
= `0/2`
= 0
Hence, 0 is correct.
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
find the value of: sin2 30° + cos2 30°+ cot2 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Prove that : sec245° - tan245° = 1
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to