Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
उत्तर
cosec330° cos60° tan345° sin290° sec245° cot30°.
sin30° = `(1)/(2)`
cosec30° = 2
cos60° = `(1)/(2)`
sec60° = 2
cos45° = `(1)/sqrt(2)`
sec45° = `sqrt(2)`
tan45° = 1
sin90° = 1
tan30° = `(1)/sqrt(3)`
⇒ cot30° = `sqrt(3)`
cosec330° cos60° tan345° sin290° sec245° cot30°
= `(2)^3(1/2)(1)^3(1)^2(sqrt(2))^2(sqrt(3))`
= `8 xx (1)/(2) xx 2 xx sqrt(3)`
= `8sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
cosec 31° − sec 59°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If sin x = cos x and x is acute, state the value of x
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10